Malignant Pleural Mesothelioma

NCCN.org

NCCN Guidelines for Patients® available at www.nccn.org/patients
NCCN Malignant Pleural Mesothelioma Panel Members

Summary of Guidelines Updates

- Initial Evaluation (MPM-1)
- Pretreatment Evaluation (MPM-2)
- Clinical Stage I-III and Epithelial or Mixed Histology, Evaluation (MPM-2)
- Clinical Stage IV or Sarcomatoid Histology; Medically Inoperable (MPM-2)
- Clinical Stage I-III, Treatment for Medically Operable (MPM-3)
- Principles of Supportive Care (MPM-A)
- Principles of Chemotherapy (MPM-B)
- Principles of Surgery (MPM-C)
- Principles of Radiation Therapy (MPM-D)

Staging (ST-1)

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2016.
Updates in Version 2.2016 of the NCCN Guidelines for Malignant Pleural Mesothelioma from Version 1.2016 include:

MS-1
- The discussion section was updated to reflect the changes in the algorithm.

Updates in Version 1.2016 of the NCCN Guidelines for Malignant Pleural Mesothelioma from Version 2.2015 include:

MPM-2
- Clinical stage IV, Sarcomatoid histology and medically inoperable combined.
 - Treatment options differentiated based on performance status.
 - PS 0-2: options include chemotherapy or observation until progression, then chemotherapy at progression.
 - PS 3-4: best supportive care.
- Footnote “g” modified: “Observation may be considered for patients who are asymptomatic with minimal burden of disease if chemotherapy is planned at the time of symptomatic or radiographic progression.

MPM-C
- Bullet 3; sentence added: “If it is possible to remove most of the gross disease to help with postoperative management, with a minimal impact on morbidity, then surgery should be continued.”

MPM-D 1 of 3
- General Principles; Bullet 6 modified: “RT is an effective palliative treatment for relief of chest pain, bronchial or esophageal obstruction, or other symptomatic sites associated with mesothelioma.”

MPM-D 2 of 3
- Radiation Techniques; bullet 2 modified: “CT simulation-guided planning with using either intensity-modulated radiation therapy (IMRT) or conventional photon/electron RT is acceptable recommended.”
INITIAL EVALUATION

- CT chest with contrast
- Thoracentesis for cytologic assessment
- Pleural biopsy (eg, Abrams needle, CT-guided core biopsy, thoracoscopic biopsy [preferred], open biopsy)
- Soluble mesothelin-related peptide (optional)

Malignant pleural mesothelioma (MPM) confirmed

Management by a multidisciplinary team with experience in MPM recommended

See Pretreatment Evaluation (MPM-2)

There are no data to suggest that screening improves survival.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Malignant Pleural Mesothelioma

PATHOLOGIC DIAGNOSIS

- Malignant pleural mesothelioma

PRETREATMENT EVALUATION

- Chest/abdominal CT with contrast
- Chest MRI (optional) b
- If suggested by imaging studies, consider VATS and/or laparoscopy if suspicion of contralateral or peritoneal disease

CLINICAL ASSESSMENT

- Clinical stage I-III and Epithelial or Mixed histology c

SURGICAL EVALUATION

- PFTs including DLCO
- PET-CT d
- Mediastinoscopy or EBUS FNA of mediastinal lymph nodes
- Perfusion scanning (only if FEV1 <80%)
- Cardiac stress test

TREATMENT e

- Clinical stage IV or Sarcomatoid histology or Medically inoperable

- PS 0-2
 - Consider observation for progression g or Chemotherapy f

- PS 3-4
 - Best supportive care e

Discussion

- **Note:** All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

b For further evaluation of possible chest, spinal, diaphragmatic, or vascular involvement based on CT imaging.

c Assessment by multidisciplinary team with experience in malignant pleural mesothelioma.

d PET-CT should be performed before any pleurodesis.

e See Principles of Supportive Care (MPM-A).

f See Principles of Chemotherapy (MPM-B).

g Observation may be considered for patients who are asymptomatic with minimal burden of disease if chemotherapy is planned at the time of symptomatic or radiographic progression.
Malignant Pleural Mesothelioma

Clinical Stage I-III

- **Medically operable**
 - **Induction chemotherapy** with pemetrexed and cisplatin
 - **Surgical exploration**
 - Chest CT with contrast
 - Other imaging for mediastinal assessment based on CT
 - **Adjunctive surgical exploration**
 - Resectable
 - Pleurectomy/decortication
 - Observation
 - Unresectable
 - Chemotherapy
 - **Hemithoracic RT**

- **Sequential chemotherapy + Hemithoracic RT**

Unresectable

- Pleurectomy/decortication
- Hemithoracic RT

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Supportive Care (MPM-A).

See Principles of Chemotherapy (MPM-B).

See Principles of Surgery (MPM-C).

See Principles of Radiation Therapy (MPM-D).
PRINCIPLES OF SUPPORTIVE CARE

- Pleural effusions: Talc pleurodesis or pleural catheter, if required for management of pleural effusion

- Smoking cessation counseling and intervention (http://www.smokefree.gov/). See the NCCN Guidelines for Lung Cancer Screening.

- Pain management: See NCCN Guidelines for Adult Cancer Pain

- Nausea/vomiting: See NCCN Guidelines for Antiemesis

- Psychosocial distress: See NCCN Guidelines for Distress Management

- See NCCN Guidelines for Palliative Care as indicated

\(^a\)Recommend obtaining PET/CT before pleurodesis. Confirm diagnosis of malignant pleural mesothelioma (MPM) prior to pleurodesis. If MPM is suspected, consider evaluation by a multidisciplinary team with expertise in MPM.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
FIRST-LINE COMBINATION CHEMOTHERAPY REGIMENS

- Pemetrexed* 500 mg/m² day 1
 Cisplatin 75 mg/m² day 1
 Administered every 3 weeks (category 1)¹
- Pemetrexed 500 mg/m² day 1
 Cisplatin 75 mg/m² day 1
 Bevacizumab 15 mg/kg day 1
 Administered every 3 weeks for 6 cycles followed by maintenance bevacizumab 15 mg/kg every 3 weeks until disease progression²,**
- Pemetrexed* 500 mg/m² day 1
 Carboplatin AUC 5 day 1
 Administered every 3 weeks³-⁵
- Gemcitabine 1000–1250 mg/m² days 1, 8, and 15
 Cisplatin 80–100 mg/m² day 1
 Administered in 3- to 4-week cycles⁶,⁷
- Pemetrexed* 500 mg/m² every 3 weeks⁸
- Vinorelbine 25–30 mg/m² weekly⁹

*Pemetrexed-based chemotherapy may also be used for malignant peritoneal mesothelioma and tunica vaginalis testis mesothelioma.¹⁶

**The combination regimen of pemetrexed/cisplatin/bevacizumab is only for unresectable disease.

SECOND-LINE CHEMOTHERAPY

- Pemetrexed* (if not administered as first-line) (category 1)¹⁰
 Consider rechallenge if good sustained response at the time initial chemotherapy was interrupted¹¹
- Vinorelbine¹²,¹³
- Gemcitabine¹³-¹⁵
PRINCIPLES OF CHEMOTHERAPY (2 of 2)

References

Malignant Pleural Mesothelioma

PRINCIPLES OF SURGERY

• Surgical resection should be performed on carefully evaluated patients by board-certified thoracic surgeons with experience in managing MPM.
• For patients being considered for surgery, a single-port thoracoscopy on the line of the potential incision is recommended.
• The goal of surgery is complete gross cytoreduction of the tumor. The goal of cytoreductive surgery is “macroscopic complete resection.” In other words, removal of ALL visible or palpable tumors. In cases where this is not possible, such as in multiple sites of chest wall invasion, surgery should be aborted. If it is possible to remove most of the gross disease to help with postoperative management, with a minimal impact on morbidity, then surgery should be continued.
• The surgical choices are: 1) pleurectomy/decortication (P/D) with mediastinal lymph node sampling, which is defined as complete removal of the pleura and all gross tumor; and 2) extrapleural pneumonectomy (EPP), which is defined as en-bloc resection of the pleura, lung, ipsilateral diaphragm, and often pericardium. Mediastinal node sampling should be performed with a goal to obtain at least 3 nodal stations.
• Numerous studies have defined sarcomatoid as a poor prognostic factor for any surgical or non-surgical treatment of MPM and is a contraindication to EPP.
• For early disease (confined to the pleural envelope, no N2 lymph node involvement) with favorable histology (epithelioid), PD may be safer than EPP but it is unclear which operation is oncologically better. There is controversy regarding choice of procedure that needs to be weighed, taking into account tumor histology, distribution, patient pulmonary reserve, and availability of adjuvant and intraoperative strategies. P/D and EPP are each reasonable surgical treatment options and should be considered in select patients for complete gross cytoreduction.2-5
• If N2 disease or a mixed histology tumor is identified, prognosis with surgery (and other therapy) is substantially diminished. Surgical resection should only be considered in the setting of a clinical trial or at a center with expertise in MPM.
• If technically appropriate for even more advanced disease, lung sparing operations like P/D reduces the risk for perioperative mortality and may be acceptable in terms of achieving complete macroscopic resection.
• Intraoperative adjuvant therapy, such as heated chemotherapy or photodynamic therapy, is still under investigation but may be considered as part of a reasonable multidisciplinary approach to this locally aggressive disease.
• After recovery from surgery, patients should be referred for adjuvant therapy, which may include chemotherapy and RT depending on whether any preoperative therapy was used and on the pathologic analysis of the surgical specimen.

PRINCIPLES OF RADIATION THERAPY (1 of 3)

General Principles
• Recommendations regarding RT should be made by a radiation oncologist.
• The best timing for delivering RT after surgical intervention and/or in conjunction with chemotherapy should be discussed in a multidisciplinary team, including radiation oncologists, surgeons, medical oncologists, diagnostic imaging specialists, and pulmonologists.
• For patients with resectable MPM who undergo EPP, adjuvant RT can be recommended for patients with good performance status (PS) to improve local control.¹⁻⁶
• PET scanning for treatment planning can be used as indicated.
• RT can be used to prevent instrument-tract recurrence after pleural intervention.
• RT is an effective palliative treatment for relief of chest pain, bronchial or esophageal obstruction, or other symptomatic sites associated with mesothelioma.
• When there is limited or no resection of disease, delivery of high-dose RT to the entire hemithorax in the setting of an intact lung has not been shown to be associated with significant survival benefit, and the toxicity is significant.¹⁻⁵,⁶ RT under such circumstances or after P/D is usually not recommended, but may be considered with caution under strict dose limits of organs at risk or IRB-approved protocols.
• Acronyms and abbreviations related to RT are the same as listed in the principles of RT for non-small cell lung cancer. See NCCN Guidelines for Non-Small Cell Lung Cancer.

Radiation Dose and Volume
• The dose of radiation should be based on the purpose of the treatment. See Recommended Doses for Conventionally Fractionated Radiation Therapy (MPM-D 2 of 3).
• The dose of radiation for adjuvant therapy following EPP should be 50–60 Gy in 1.8–2.0 Gy based on the margin status. A dose of 54 Gy given to the entire hemithorax, the thoracotomy incision, and sites of chest drains was well-tolerated.⁶,⁷ When it is challenging to deliver 50 Gy, every effort should be made to deliver a minimum dose of 40 Gy.¹
• A dose ≥60 Gy should be delivered to macroscopic residual tumors if the doses to adjacent normal structures are limited to their tolerances. In addition to covering the surgical bed within the thorax, the volume of postoperative radiation should also include the surgical scars and biopsy tracks in the chest wall.⁸⁻¹⁰
• Daily doses of 4 Gy appear to be more efficacious than fractions of less than 4 Gy in providing relief from chest pain associated with mesothelioma,⁹,¹¹ although the optimal daily and total dose of RT for palliative purposes remains unclear.
• For prophylactic radiation to surgical sites, a total dose of 21 Gy (3 x 7 Gy) is recommended.⁸,¹² For patients with residual tumors, some experienced investigators have used brachytherapy or intraoperative external beam radiation in combination with surgery.

See Radiation Techniques (MPM-D 2 of 3)
PRINCIPLES OF RADIATION THERAPY (2 of 3)

Recommended Doses for Conventionally Fractionated Radiation Therapy

<table>
<thead>
<tr>
<th>Treatment type</th>
<th>Total dose</th>
<th>Fraction size</th>
<th>Treatment duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative after EPP Negative margins</td>
<td>50–54 Gy</td>
<td>1.8–2 Gy</td>
<td>4–5 weeks</td>
</tr>
<tr>
<td></td>
<td>54–60 Gy</td>
<td>1.8–2 Gy</td>
<td>5–6 weeks</td>
</tr>
<tr>
<td>Microscopic-macroscopic positive margins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palliative Chest wall pain from recurrent nodules</td>
<td>20–40 Gy</td>
<td>≥4 Gy</td>
<td>1–2 weeks</td>
</tr>
<tr>
<td>or 30 Gy</td>
<td>3 Gy</td>
<td>2 weeks</td>
<td></td>
</tr>
<tr>
<td>Multiple brain or bone metastasis</td>
<td>30 Gy</td>
<td>2 weeks</td>
<td></td>
</tr>
<tr>
<td>Prophylactic radiation to prevent surgical tract recurrence</td>
<td>21 Gy</td>
<td>7 Gy</td>
<td>1 week</td>
</tr>
</tbody>
</table>

After EPP, RT should only be considered for patients who meet the following criteria: ECOG PS ≤1; good functional pulmonary status; good function of contralateral kidney confirmed by renal scan; and absence of disease in abdomen, contralateral chest, or elsewhere. Patients who are on supplemental oxygen should not be treated with adjuvant RT.

Radiation Techniques

- Use of conformal radiation technology is the preferred choice based on comprehensive consideration of target coverage and clinically relevant normal tissue tolerance.
- CT simulation-guided planning using either intensity-modulated radiation therapy (IMRT) or conventional photon/electron RT is acceptable. IMRT is a promising treatment technique that allows for a more conformal high-dose RT and improved coverage to the hemithorax. IMRT or other modern technology (such as tomotherapy or protons) should only be used in experienced centers or on protocol. When IMRT is applied, the NCI and ASTRO/ACR IMRT guidelines should be strictly followed. Special attention should be paid to minimize radiation to the contralateral lung, as the risk of fatal pneumonitis with IMRT is excessively high when strict limits are not applied. The mean lung dose should be kept as low as possible, preferably <8.5 Gy. The low-dose volume should be minimized.
- The gross tumor volume (GTV) should include any grossly visible tumor. Surgical clips (indicative of gross residual tumor) should be included for postoperative adjuvant RT.
- The clinical target volume (CTV) for adjuvant RT after EPP should encompass the entire pleural surface (for partial resection cases), surgical clips, and any potential sites with residual disease.
- Extensive elective nodal irradiation (entire mediastinum and bilateral supraclavicular nodal regions) is not recommended.
- The planning target volume (PTV) should consider the target motion and daily setup errors. The PTV margin should be based on the individual patient's motion, simulation techniques used (with and without inclusion motion), and reproducibility of each clinic's daily setup.
PRINCIPLES OF RADIATION THERAPY (3 of 3) - References

Table 1.

International Mesothelioma Interest Group (IMIG) Staging System for Diffuse Malignant Pleural Mesothelioma

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1, T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T3</td>
<td>N0, N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Table 1. International Mesothelioma Interest Group (IMIG) Staging System for Diffuse Malignant Pleural Mesothelioma

T

Primary Tumor

TX	Primary tumor cannot be assessed
T0	No evidence of primary tumor
T1	Tumor limited to the ipsilateral parietal pleura with or without mediastinal pleura and with or without diaphragmatic pleural involvement
T1a	No involvement of the visceral pleura
T1b	Tumor also involving the visceral pleura
T2	Tumor involving each of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura) with a least one of the following: -Involvement of the diaphragmatic muscle -Extension of tumor from visceral pleura into the underlying pulmonary parenchyma
T3	Locally advanced but potentially resectable tumor. Tumor involving all of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura), with at least one of the following: -Involvement of the endothoracic fascia -Extension into the mediastinal fat -Solitary, completely resectable focus of tumor extending into the soft tissues of the chest wall -Nontransmural involvement of the pericardium
T4	Locally advanced technically unresectable tumor. Tumor involving all of the ipsilateral pleural surfaces (parietal, mediastinal, diaphragmatic, and visceral pleura) with at least one of the following: -Diffuse extension or multifocal masses of tumor in the chest wall, with or without associated rib destruction -Direct transdiaphragmatic extension of the tumor to the peritoneum -Direct extension of tumor to the contralateral pleura -Direct extension of the tumor to mediastinal organs -Direct extension of tumor into the spine -Tumor extending through to the internal surface of the pericardium with or without a pericardial effusion or tumor involving the myocardium

N

Regional Lymph Nodes

<table>
<thead>
<tr>
<th>N</th>
<th>Regional Lymph Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis to the ipsilateral bronchopulmonary or hilar lymph nodes</td>
</tr>
<tr>
<td>N2</td>
<td>Metastases in the subcarinal lymph node or the ipsilateral mediastinal lymph nodes including the ipsilateral internal mammary and peridiaphragmatic nodes</td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis in contralateral mediastinal, contralateral internal mammary, ipsilateral or contralateral supraclavicular lymph nodes</td>
</tr>
</tbody>
</table>

M

Distant Metastasis

<table>
<thead>
<tr>
<th>M</th>
<th>Distant Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Seventh Edition (2010), published by Springer Science+Business Media, LLC (SBM). For complete information and data supporting the staging tables, visit www.springer.com. Any citation or quotation of this material must be credited to the AJCC as its primary source. The inclusion of this information herein does not authorize any reuse or further distribution without the expressed, written permission of Springer SBM, on behalf of the AJCC.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview .. MS-2

Literature Search Criteria and Guidelines Update Methodology .. MS-3

Diagnosis .. MS-3

Management .. MS-4

Surgery .. MS-5

Chemotherapy .. MS-6

Radiation Therapy .. MS-7

References ... MS-9
Overview

Mesothelioma is a rare cancer that is estimated to occur in approximately 2,500 people in the United States every year.1,2 These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) focus on malignant pleural mesothelioma (MPM), which is the most common type. Mesothelioma can also occur in the lining of other sites such as the peritoneum, pericardium, and tunica vaginalis testis.3-5 MPM is difficult to treat, because most patients have advanced disease at presentation. Median overall survival is approximately 1 year; cure is rare.6-8 MPM occurs mainly in older men (median age at diagnosis, 72 years) who have been exposed to asbestos, although it occurs decades after exposure (20–40 years later).9-11

The incidence of MPM is leveling off in the United States, because asbestos use has decreased since the 1970s; however, the United States still has more reported cases and deaths than anywhere else in the world.12-14 The mortality burden from asbestos-related diseases in the United States did not change from 1999 to 2010.15 Although asbestos is no longer mined in the United States, it is still imported.14 The incidence of MPM is increasing in other countries such as Russia, Western Europe, China, and India.1,13,16-20 Mortality rates from MPM are highest in the United Kingdom, Netherlands, and Australia; mortality rates are increasing in Japan, Argentina, and Brazil.7,16,21 Russia, China, Brazil, and Canada are the top producers of asbestos.22 Although most mesothelioma is linked to asbestos exposure, reports suggest that ionizing radiation may also cause mesothelioma, such as in patients previously treated with mantle radiation for Hodgkin lymphoma.23-32 Recent data also suggest that erionite (a mineral that may be found in gravel roads) is associated with mesothelioma.33-35 Genetic factors may also play a role in MPM, with some families carrying a germline mutation in the BRCA1 Associated Protein 1 (BAP1) gene.36-39 Smoking is not a risk factor for mesothelioma.40 However, patients who smoke and have been exposed to asbestos are at increased risk for lung cancer. In addition, patients who smoke should be encouraged to quit because smoking impedes treatment (eg, delays wound healing after surgery) (http://www.smokefree.gov/) (see the NCCN Guidelines® for Smoking Cessation, available at NCCN.org).41

The histologic subtypes of mesothelioma include epithelioid (most common), sarcomatoid, and biphasic (mixed) epithelioid and sarcomatoid.2,42,43 Patients with epithelioid histology have better outcomes than those with either mixed (biphasic) or sarcomatoid histologies. Some patients who have been exposed to asbestos only have benign pleural disease, although they may have significant chest pain.44,45 Although screening for mesothelioma has been studied in patients at high risk (ie, those with asbestos exposure), these NCCN Guidelines do not recommend screening for MPM because it has not been shown to decrease mortality (see Initial Evaluation in the NCCN Guidelines® for Malignant Pleural Mesothelioma).22,46-48 Note that data and guidelines about screening for lung cancer with low-dose CT do not apply to MPM; there are no data to suggest that screening improves survival for patients with MPM.22,49

This Discussion text describes the recommendations in the algorithms in greater detail, for example, by including the clinical trial data and other references that support the NCCN Panel’s recommendations in the algorithms. Additional supplementary material in the NCCN Guidelines includes the Principles of Supportive Care, Principles of Chemotherapy, Principles of Surgery, and Principles of Radiation Therapy. These NCCN Guidelines for Malignant Pleural Mesothelioma were developed and are updated by panel members who are also on the panel for the NCCN Guidelines for Non-Small Cell Lung Cancer. The Summary of the Guidelines Updates section in the algorithm briefly...
describes the new changes for 2016. The Principles of Surgery were extensively revised for the 2015 update. The NCCN Guidelines for Malignant Pleural Mesothelioma are updated at least once a year.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines for Malignant Pleural Mesothelioma, an electronic search of the PubMed database was performed to obtain key literature on mesothelioma published between September 2014 and September 2015 using the following search term: malignant pleural mesothelioma. The PubMed database was chosen, because it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 1; Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 38 citations, and their potential relevance was examined. The data from key PubMed articles as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the panel have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, then recommendations are based on the panel’s review of lower-level evidence and expert opinion. The complete details of the Development and Update of the NCCN Guidelines are available on the [NCCN webpage](http://www.nccn.org).

Diagnosis

Patients with suspected MPM often have dyspnea and chest pain; they may also have pleural effusion, fatigue, insomnia, cough, chest wall mass, loss of appetite, and weight loss (see the NCCN Guidelines for Adult Cancer Pain, available at [NCCN.org](http://www.nccn.org)). Patients with MPM often have a high symptom burden when compared with patients who have other types of cancer. In patients with recurrent pleural effusion and/or pleural thickening, the recommended initial evaluation for suspected MPM includes: 1) CT of the chest with contrast; 2) thoracentesis for cytologic assessment of the effusion; and 3) pleural biopsy (eg, thoracoscopic biopsy [preferred]) (see Initial Evaluation in the NCCN Guidelines for Malignant Pleural Mesothelioma). However, cytologic samples are often negative even when patients have MPM. Fine-needle aspiration (FNA) is not recommended for diagnosis. Talc pleurodesis or pleural catheter may be needed for management of pleural effusion. Soluble mesothelin-related peptide (SMRP) levels may also be assessed, and these levels may correlate with disease status; osteopontin does not appear to be as useful for diagnosis. Other potential diagnostic biomarkers are being assessed.

It can be difficult to distinguish malignant from benign pleural disease and also to distinguish MPM from other malignancies such as metastatic adenocarcinoma, sarcoma, or other metastases to the pleura. On CT, thymoma metastatic to the pleura can mimic MPM; however, pleural effusion does not typically occur with thymoma. Cytologic samples of pleural fluid are often negative or inconclusive, but diagnosis can sometimes be made using cytology. Calretinin, WT-1, D2-40, and cytokeratin (CK) 5/6 are useful immunohistochemical markers for the diagnosis of MPM, as are markers that typically are positive in pulmonary adenocarcinoma and negative in mesothelioma (eg, thyroid transcription factor 1 [TTF-1], carcinoembryonic antigen [CEA]) (see Protocol for the Examination of Specimens From Patients
Management

The NCCN Guidelines recommend that patients with MPM be managed by a multidisciplinary team with experience in MPM. Treatment options for patients with MPM include surgery, radiation therapy (RT), and/or chemotherapy; select patients (ie, clinical stages I–III, medically operable, good performance status [PS]) are candidates for multimodality therapy. Definitive RT alone is not recommended for unresectable MPM; chemotherapy alone is recommended in this setting (see Treatment in the NCCN Guidelines for Malignant Pleural Mesothelioma). Appropriate patients should be evaluated by radiation oncologists, surgeons, medical oncologists, diagnostic imaging specialists, and pulmonologists to assess if they are candidates for multimodality treatment.

Pretreatment evaluation for patients diagnosed with MPM is performed to stage patients and to assess whether patients are candidates for surgery. This evaluation includes: 1) chest and abdominal CT with contrast; and 2) FDG–PET-CT but only for patients being considered for surgery. Video-assisted thoracic surgery (VATS) or laparoscopy can be considered if contralateral or peritoneal disease is suspected. When indicated, PET-CT scans should be obtained before pleurodesis if possible, because talc produces pleural inflammation, which can affect the FDG avidity (ie, false-positive result). If surgical resection is being considered, mediastinoscopy or endobronchial ultrasonography (EBUS) FNA of the mediastinal lymph nodes is recommended. The following tests may be performed if suggested by imaging: 1) laparoscopy to rule out transdiaphragmatic extension (eg, extension to the peritoneum is indicative of stage IV [unresectable] disease); and 2) chest MRI to evaluate possible chest, spinal, diaphragmatic, or vascular involvement.

Staging is performed using the International Mesothelioma Interest Group (IMIG) TNM staging system (see Table 1 in the NCCN Guidelines for Malignant Pleural Mesothelioma), which was approved by the AJCC. Note that a new edition (8th) of the AJCC Staging Guidelines is anticipated in mid-2016. Most patients have advanced disease at presentation. However, it is difficult to accurately stage patients before surgery. Understaging is common with PET-CT. However, PET-CT is useful for determining whether metastatic disease is present. Surgical resection is recommended for patients with clinical stage I to III MPM who are medically operable and can tolerate the surgery. Patients with clinical stage I to III MPM can be evaluated for surgery using pulmonary function tests (PFTs) including diffusing capacity for carbon dioxide (DLCO), perfusion scanning (if forced expiratory volume in 1 second [FEV1] <80%), and cardiac stress tests (see Surgical Evaluation in the NCCN Guidelines for Malignant Pleural Mesothelioma). Multimodality therapy (ie, chemotherapy, surgery, RT) is recommended for patients with clinical stages I to III MPM who are medically operable (see Treatment in the NCCN Guidelines for Malignant Pleural Mesothelioma).

Chemotherapy alone is recommended for patients with PS 0 to 2 who are not operable or refuse surgery, those with clinical stage IV MPM, or those with sarcomatoid histology; best supportive care is recommended for patients with PS 3 to 4 (see Chemotherapy in this Discussion and Principles of Chemotherapy and Principles of Supportive Care in the NCCN Guidelines for Malignant Pleural Mesothelioma). Observation may be considered for patients with PS 0 to 2 who are asymptomatic with minimal burden of disease if chemotherapy is planned when progression occurs (either radiologic or symptomatic progression).
Pleural effusion can be managed using thoracoscopic talc pleurodesis or placement of a drainage catheter.59,63,104-106 Therapeutic/palliative thoracentesis can also be used to remove pleural fluid and thus decrease dyspnea either before treatment or for patients who are not candidates for more aggressive treatment.21

Surgery

It is essential that patients receive a careful assessment before surgery is performed. Surgical resection for patients with MPM can include either 1) pleurectomy/decortication (P/D; also known as total pleurectomy, lung-sparing surgery), which is complete removal of the involved pleura and all gross tumor; or 2) extrapleural pneumonectomy (EPP), which is en-bloc resection of the involved pleura, lung, ipsilateral diaphragm, and often the pericardium (see *Principles of Surgery* in the NCCN Guidelines for Malignant Pleural Mesothelioma).107 Extended P/D refers to the resection of the diaphragm and pericardium in addition to total pleurectomy.107 Mediastinal nodal dissection is recommended in patients having either P/D or EPP; at least 3 nodal stations should be obtained. The surgical goal for MPM is cytoreductive surgery to achieve macroscopic complete resection by removing all visible or palpable tumors.108,109 If macroscopic complete resection is not possible—such as patients with multiple sites of chest wall invasion—then surgery should be aborted. However, surgery should be continued if most of the gross disease can be removed to help with postoperative management and if there will be a minimal impact on morbidity.

The choice of surgery for MPM is controversial, because data from randomized controlled trials are not available.2,21,110-116 Neither EPP nor P/D will yield an R0 resection.2,117,118 EPP would often be required to remove all gross tumor in patients with stages II to III MPM.51 However, EPP is associated with higher morbidity and mortality.111,119 P/D (ie, lung-preserving surgery) is safer than EPP.119-126 A retrospective analysis ($n = 663$) suggested that survival was greater after P/D than after EPP, but this may have been confounded by patient selection.2,124 A recent meta-analysis suggested a trend in favor of overall survival for extended PD when compared with EPP.111 Lung-sparing options, such as P/D, reduce the risk for perioperative mortality and yield either equal or better long-term survival than non-surgical therapy in patients with more advanced disease.117,127

A feasibility trial (Mesothelioma and Radical Surgery [MARS]) assessed whether patients treated with induction chemotherapy would accept randomization to EPP or no surgery; 112 were patients enrolled in the trial, and 50 patients were randomized.128 The authors concluded that due to the observed high rate of surgical mortality, EPP was not beneficial when compared with chemotherapy treatment alone. However, these results were controversial because survival was not the primary outcome of the study, the sample size was small, and the surgical mortality was higher than expected.129 An Australian retrospective study (540 patients) reported that several factors yielded increased survival for select patients, including EPP, surgeon experience, and treatment with pemetrexed.130 The NCCN Panel and other clinicians recommend surgery for select patients who require a complete cytoreduction (ie, good PS, no comorbidities, patients with stage II to III disease, favorable histology [ie, epithelioid], no N2 disease), but surgery is not usually recommended for patients at high risk (eg, unfavorable histology [eg, sarcomatoid, mixed tumors]).5,113,131,132

The NCCN Panel feels that P/D and EPP are reasonable surgical options that should be considered in select patients to achieve complete gross cytoreduction.111,124,128,133,134 Although P/D may be safer than EPP, it is not clear which operation is oncologically better. When surgery is
indicated, the choice between P/D and EPP should be made based on several factors including tumor histology and distribution, pulmonary reserve, surgical experience and expertise, and availability of adjuvant and intraoperative strategies. For patients with operable early-stage disease (confined to the pleural envelope [stage I], no N2 lymph node involvement), surgery should be considered for select patients. In patients who are medically operable, the decision about whether to do a P/D or an EPP may not be made until surgical exploration. P/D may be more appropriate for patients with advanced MPM who cannot tolerate an EPP. P/D may also be useful for symptom control (eg, patients with entrapped lung syndrome).

The NCCN Panel does not recommend surgery for patients with stage IV MPM or sarcomatoid histology; chemotherapy is recommended for these patients (see Chemotherapy in this Discussion and Treatment in the NCCN Guidelines for Malignant Pleural Mesothelioma). In addition, surgery is generally not recommended for patients with N2 disease or mixed histology tumor unless performed at a center of expertise or in a clinical trial.

Chemotherapy

Chemotherapy is recommended either alone for medically inoperable patients with MPM or as part of a multimodality regimen for patients with medically operable MPM (see Treatment and Principles of Chemotherapy in the NCCN Guidelines for Malignant Pleural Mesothelioma). Patients with medically operable stage I to III MPM can receive chemotherapy either before or after surgery. Chemotherapy alone is recommended for patients with medically inoperable stages I to IV MPM, those who refuse surgery, and those with sarcomatoid histology. Pemetrexed-based chemotherapy can also be used for malignant peritoneal mesothelioma and for tunica vaginalis testis mesothelioma.

A combined first-line regimen using cisplatin/pemetrexed (category 1) is considered the gold standard for MPM and is currently the only regimen approved by the FDA. A phase 3 randomized trial assessed cisplatin/pemetrexed versus cisplatin alone in patients who were not candidates for surgery; the combined regimen increased survival by 2.8 months when compared with cisplatin alone (12.1 vs. 9.3 months, \(P = .02 \)). Based on this trial and the FDA approval, the NCCN Panel recommends cisplatin/pemetrexed (category 1) for patients with MPM. A recent multicenter phase 3 randomized trial (IFCT-GFPC-0701 MAPS) compared adding bevacizumab to cisplatin/pemetrexed (with maintenance bevacizumab) versus cisplatin/pemetrexed alone for patients with unresectable MPM and PS 0-2 who did not have bleeding or thrombosis. Overall survival was increased in the bevacizumab plus chemotherapy arm by 2.7 months when compared with chemotherapy alone (18.8 vs. 16.1 months; HR = 0.77; \(P = .0167 \)). Grade 3 to 4 adverse events were reported in 71% (158/222) of patients receiving the bevacizumab regimen when compared with 62% (139/224) of those receiving cisplatin/pemetrexed alone. More grade 3 or higher hypertension (23% vs. 0%), grade 3 proteinuria (3.1% vs. 0%), and grade 3-4 thrombotic events (6% vs. 1%) were observed in patients receiving the triplet arm. The NCCN Panel recommends (category 2A) bevacizumab, cisplatin, and pemetrexed for patients with unresectable MPM based on this trial (see Principles of Chemotherapy in the NCCN Guidelines for Malignant Pleural Mesothelioma).

Other acceptable first-line combination chemotherapy options recommended by NCCN include: 1) pemetrexed/carboplatin, which was assessed in 3 large phase 2 studies (median survival = 12.7, 14, and 14 months, respectively); or 2) gemcitabine/cisplatin, which was also assessed in phase 2 studies (median survival = 9.6–11.2 months). Gemcitabine/cisplatin may be useful for patients who cannot take
Malignant Pleural Mesothelioma

pemetrexed. A comparison of 1,704 patients with medically inoperable MPM treated with cisplatin/pemetrexed or carboplatin/pemetrexed as part of an expanded access trial found that outcomes with the regimens were similar.152 The carboplatin/pemetrexed regimen is a better choice for patients with poor PS and/or comorbidities.

Acceptable first-line single-agent options include pemetrexed or vinorelbine.153-155 Second-line chemotherapy options include pemetrexed (if not administered first line) (category 1), vinorelbine, or gemcitabine.154,156-162 Data suggest that rechallenging with pemetrexed is effective if patients had a good response to first-line pemetrexed.156,163 Limited data are available to guide second-line therapy, although several agents are in clinical trials.156,164-167 Preliminary data suggest that immune checkpoint inhibitors may be useful as second-line therapy for MPM.168-171

Trimodality therapy using chemotherapy, surgery, and hemithoracic RT has been used in patients with MPM.86-89,172 Median survival of up to 20 to 29 months has been reported for patients who complete trimodality therapy.87,172 Nodal status and response to chemotherapy can affect survival.87,90 In patients who do not receive induction chemotherapy before EPP, postoperative sequential chemotherapy with hemithoracic RT is recommended. Intraoperative adjuvant therapies—such as hyperthermic pleural lavage, photodynamic therapy, or heated chemotherapy—are under investigation.164,173-180

Radiation Therapy

The Principles of Radiation Therapy are described in the algorithm and are summarized in this Discussion (see the NCCN Guidelines for Malignant Pleural Mesothelioma). The NCCN Guidelines for Non-Small Cell Lung Cancer are also a useful resource. In patients with MPM, RT can be used as part of a multimodality regimen; however, RT alone is not recommended (see next paragraph). RT can also be used as palliative therapy for relief of chest pain, bronchial or esophageal obstruction, or other symptomatic sites associated with MPM such as metastases in bone or in the brain (see the NCCN Guidelines for Malignant Pleural Mesothelioma and NCCN Guidelines for Central Nervous System Cancers, available at NCCN.org).21,91,181 The dose of radiation should be based on the purpose of treatment.182 The most appropriate timing of delivering RT (ie, after surgical intervention, with or without chemotherapy) should be discussed with a multidisciplinary team. After EPP, adjuvant RT may reduce the local recurrence rate.135,183-185 Patients are candidates for RT if they have good PS, pulmonary function, and kidney function (see Principles of Radiation Therapy in the NCCN Guidelines for Malignant Pleural Mesothelioma). However, in patients with limited or no resection of disease (ie, in the setting of an intact lung), high-dose RT to the entire hemithorax has not been shown to improve survival and is associated with significant toxicity.91 RT can also be used to prevent instrument-tract recurrence after pleural intervention.88,118,135,186-188

CT simulation–guided planning using either IMRT or conventional photon/electron RT is acceptable.172,183,185,189 For treatment planning, PET scans can be used as indicated. The clinical target volumes should be reviewed with the thoracic surgeon to ensure coverage of all the volumes at risk. The total doses of radiation are described in the algorithm (see Principles of Radiation Therapy in the NCCN Guidelines for Malignant Pleural Mesothelioma). A dose of 60 Gy or more is recommended for macroscopic residual tumors, if the doses to normal adjacent structures are limited to their tolerances (see the NCCN Guidelines for Non-Small Cell Lung Cancer, available at NCCN.org). In addition to covering the surgical bed within the thorax, the volume of postoperative radiation should also include the surgical scars and...
biopsy tracks in the chest wall, although this is controversial. The optimal dose of RT for palliative purposes remains unclear. For patients with chest pain from mesothelioma, total doses of 20 to 40 Gy appear to be effective in providing relief from pain.

Intensity-modulated RT (IMRT) allows a more conformal high-dose RT and improved coverage to the hemithorax at risk. The NCI and ASTRO/ACR IMRT guidelines are recommended (http://rrp.cancer.gov/content/docs/imrt.doc). The ICRU-83 (International Commission on Radiation Units & Measurements Report 83) recommendations are also a useful resource. RT to the contralateral lung should be minimized because fatal pneumonitis may occur with IMRT if strict limits are not applied. The mean lung dose should be kept as low as possible, preferably less than 8.5 Gy. The volume of contralateral lung receiving low-dose RT (eg, 5 Gy) should be minimized. Hemithoracic IMRT immediately followed by EPP was assessed in 25 patients with stage III or IV MPM on final pathologic review; for patients with epithelial subtypes of MPM, 3-year survival reached 84%. However, 13 patients had grade 3+ surgical complications and one patient died from treatment.
References

204. Rice DC, Smythe WR, Liao Z, et al. Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for...
malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 2007;69:350-357. Available at:

